写在前面
伴随着区块链的技术发展,零知识证明技术先后在隐私和Layer2扩容领域得到越来越多的应用,技术也在持续的迭代更新。从需要不同的TrustSetup的ZKP,到需要一次TrustSetup同时支持更新的ZKP,再到不需要TrustSetup的ZKP,ZKP算法逐渐走向去中心化,从依赖经典NP问题,到不依赖任何数学难题,ZKP算法逐渐走向抗量子化。
我们当然希望,一个不需要TrustSetup同时也不依赖任何数学难题、具有抗量子性的ZKP算法也具有较好的效率和较低的复杂度,它就是REDSHIFT。
REDSHIFT
《REDSHIFT:TransparentSNARKsfromListPolynomialCommitmentIOPs》,从名字可以可出,它是基于List多项式承诺且具有透明性的SNARK算法。算法本身和PLONK有大部分的相似之处,唯一不同的是多项式承诺的原语不同。下面先简单的通过一张表格来展示REDSHIFT和PLONK算法的异同之处,具体如下:
深圳大学首发“深大盒子”数字藏品:金色财经报道,据深圳大学官方公众号,深大首次发行以“去___不同”为主题的“深大盒子”数字藏品。此外,深圳大学还用上了元宇宙,今年深大新生的“盒子”在元宇宙里均有一个复刻版。[2022/8/11 12:17:47]
因此,只要对PLONK算法有深入了解的读者,相信再理解REDSHIFT算法,将是一件相对简单的事。ZKSwap团队在此之前已经对PLONK算法进行了深入的剖析,我们在文章《零知识证明算法之PLONK---电路》详细的分析了PLONK算法里,关于电路部分的详细设计,包括表格里的《Statement->Circuit->QAP》过程,并且还详细描述了PLONK算法里,关于“PermutationCheck”的原理及意义介绍,文章零知识证明算法之PLONK---协议对PLONK的协议细节进行了剖析,其中多项式承诺在里面发挥了重要的作用:保持确保算法的简洁性和隐私性。
深圳税务部门 “区块链+税务”布局提速:据羊城晚报消息,24日是“区块链中国日”,记者从深圳税务部门获悉,一年来该部门不断深化区块链技术在税收领域的应用,首推区块链电子发票,一年新增开票2300万张,基于已建成的税务链,进一步扩围“区块链+税务”的应用场景。据了解,当前和今后一段时期,深圳税务部门将发挥深圳税务在区块链技术应用等方面的先发优势,加快区块链在税收领域的布局,进一步深化应用实践,实现区块链技术为税收管理服务提供科技支撑。[2020/10/24]
我们知道,零知识证明算法的第一步,就是算术化,即把prover要证明的问题转化为多项式等式的形式。如若多项式等式成立,则代表着原问题关系成立,想要证明一个多项式等式关系是否成立比较简单,根据Schwartz–Zippel定理可推知,两个最高阶为n的多项式,其交点最多为n个。
声音 | 深圳特区报:深圳应继续在区块链等科技创新竞争中抢占先机:深圳特区报发文称,深圳应当牢牢把握“双区驱动”的历史机遇,营造更有利的社会创新环境,继续在区块链等科技创新竞争中抢占先机。具体应该:1.加强人才建设,为创新网罗英才;2.深化市场改革,为创新融汇资源;3.完善法治管理,为创新引路护航。区块链是核心技术自主创新重要突破口,继续结合自身优势,在创新人才引进、创新市场改革和创新法治建设上大胆突破,深圳必将征服科技创新一座又一座新高峰。[2019/11/25]
换句话说,如果在一个很大的域内随机选取一个点,如果多项式的值相等,那说明两个多项式相同。因此,verifier只要随机选取一个点,prover提供多项式在这个点的取值,然后由verifier判断多项式等式是否成立即可,这种方式保证了隐私性。
数据:超过81%的加密游戏交易在WAX链上完成:8月22日消息,NFTgators发推称,数据分析平台Footprint Analytics的数据显示,81.27%的加密游戏交易是在WAX区块链上进行。其中,46.9%的交易源于链游Farmers Worlds,45.7%源于Alien Worlds。[2022/8/22 12:41:09]
然而,上述方式存在一定的疑问,“如何保证prover提供的确实是多项式在某一点的值,而不是自己为了能保证验证通过而特意选取的一个值,这个值并不是由多项式计算而来?”为了解决这一问题,在经典snark算法里,利用了KCA算法来保证,具体的原理可参见V神的zk-snarks系列。在PLONK算法里,引入了多项式承诺的概念,具体的原理可在“零知识证明算法之PLONK---协议”里提到。
简单来说,算法实现了就是在不暴露多项式的情况下,使得verifier相信多项式在某一点的取值的确是prover声称的值。两种算法都可以解决上述问题,但是通信复杂度上,多项式承诺要更小,因此也更简洁。
协议
下面将详细介绍REDSHIFT算法的协议部分,如前面所述,该算法与PLONK算法有很大的相似之处,因此本篇只针对不同的部分做详细介绍;相似的部分将会标注出来方便读者理解,具体如下图所示:
协议的1-6步骤在PLONK的算法设计里都有体现,这里着重分析一下后续的第7步骤。
在PLONK算法里,prover为了使verifier相信多项式等式关系的成立,由verifier随机选取了一个点,然后prover提供各种多项式的commitment,由于使用的Katecommitment算法需要一次TrustSetup并依赖于离散对数难题,因此作为PLONK算法里的子协议,PLONK算法自然也需要TrustSetup且依赖于离散对数难题。
在REDSHIFT协议里,多项式的commitment是基于默克尔树的。若prover想证明多项式在某一个或某些点的值,证明方只需要根据这些值插值出具体的多项式,然后和原始的多项式做商并且证明得到商也是个多项式即可。
当然为了保护隐私,需要对原始多项式做隐匿处理,类似于上图协议中的第一步。在实际设计中,为了方便FRI协议的运行,往往设计原始多项式的阶d=2^n+k(其中k=log(n))。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。