作者:Chloe
Crypto行业被广泛关注的零知识证明技术,并非是这几年刚冒出来的新技术,而是在1980年就被数学家S.Goldwasser、S.Micali及C.Rackoff提出。
零知识证明涉及一系列步骤,可以实现密码学中的「可用而不可知」。
而区块链有着公开透明、不可篡改等特征,意味着加密投资者的链上资产及交易记录是没有隐私可言的,于是零知识证明技术被引入了区块链,当中以zk-SNARK和zk-STARK最为关注。
zk-SNARK被项目方采用得最多,zk-STARK则被密码学专家认为优于ZK-SNARK。那么综合技术与实际应用,二者谁更优?
zk-SNARK:简洁+?非交互性
AlessandroChiesa等人在2012年开发了zk-SNARK协议,这是一种简洁化、非交互式的零知识证明技术,全称是zero-knowledgesuccinctnon-interactiveargumentsofknowledge,可以拆解成三部分来理解:
零知识身份验证方案Outdid完成250万美元种子轮融资,Jump Crypto领投:6月30日消息,总部位于英国的零知识证明隐私身份验证方案提供商Outdid宣布完成250万美元种子轮融资,Jump Crypto领投,Superscrypt以及Matias Woloski、Martin Varsavski、Gaston Frydlewski等15名天使投资人参投。
Outdid提供了一个隐私身份验证工具,通过利用零知识证明来验证政府颁发的原始文件,而无需中介机构进行验证并出具证明。2023年5月份,隐私区块链Dusk Network宣布向Outdid投资5万美元。[2023/6/30 22:09:37]
zero-knowledge:
零知识证明,在不暴露隐私情况下向对方证明一件事情,让数据「可用而不可知」。
波卡联合创始人:财政部很快将为零知识扩展和网络基础设施发展提供巨额资金:1月23日消息,波卡联合创始人Robert Habermeier发推表示,Polkadot财政部可能很快就会为进一步发展零知识扩展和网络基础设施提供巨额资金。Exit-to-DAO作为一种商业模式将是2022年及以后的决定性变化。[2022/1/23 9:08:17]
succinct:
简洁性,要证明的东西占用的空间很小,而且可以快速验证。
non-interactive:
非交互性,意味着证明者和验证者之间不需要有交集即可快速地得到验证结果。
zk-SNARK的简洁性和非交互性,是相对于传统的零知识证明方案而言的。
简单来说,传统方案是交互式证明,即示证者和验证者之间反复确认,你可以理解为示证者不断向验证者询问“是或不是?”,然后验证者不断给出回答,直到最后碰出一个正确答案来,所以效率很低。
V神:以太坊即将过时的采矿硬件可以直接用于零知识证明:在采访中,Ethereum联合创始人V神(Vitalik Buterin)被问及一旦网络从其当前的共识算法切换到不再需要这种专用硬件的模型时,人们应该如何使用以太坊矿工。Ethereum联合创始人表示,以太坊即将过时的采矿硬件可以直接用于零知识证明。(cointelegraph)[2020/4/26]
zk-SNARK的解决方案则不需要双方反复确认“是或不是”,而是提前先搞一个「可信初始化」,从而生成公共参考字符串,然后所有的示证者都可以直接访问它。
打一个通俗的比方。交互式证明相当于老师要批改每一个考生的每一道考题,效率很低,但正确答案只掌握在老师这边,基本不存在有人偷答案的情况。
但zk-SNARK直接上传了正确答案,然后让考生自己对答案,非常高效,代价是答案有可能被泄露,虽然这个答案系统是经过加密的。
声音 | 数字资产研究院郭宇:区块链的信任需要结合共识算法、零知识证明和形式化验证:12月22日,数字资产与区块链年会(2019)暨中国投资协会数字资产研究中心成立大会在京举办。数字资产研究院学术与技术委员郭宇演讲中表示,区块链网络的吞吐率低下的核心原因是网络宽带限制,提高出块速度是此前比较流行的解决方案,但这种做法会导致区块链分叉,甚至可能威胁区块链系统安全。郭宇认为,要在不降低安全性的前提下,提高区块链吞吐率的解决方案是零知识证明。郭宇指出,区块链系统的可信实际上包括三方面:共识算法提供区块链协议信任,零知识证明提供数据信息和计算完整性,形式化验证保证计算逻辑可信。区块链的信任需要共识算法、零知识证明和形式化验证三者的结合。(新浪财经)[2019/12/23]
因此针对zk-SNARK容易被泄露的问题,有很多围绕着提高「答案系统」安全性的解决方案,不同采用zk-SNARK的项目方的方案各有不同。如zCloak钱包是直接把算法以纯文本的形式发给用户,用户下载到本地去做计算。
zk-STARK:概率证明+缓冲时间
zk-STARK是成立于2017年12月的StarkWare团队开发的,它是针对zk-SNARK的替代解决方案。研发历时一年多,经过无数次迭代才彻底搞定,已经到2019年了。
zk-SNARK是提前生成公共参考字符串,用非交互式证明的方式提高了证明效率,但也留下了隐患。zk-STARK虽然是交互式证明,但它是一种巧妙的交互式证明——通过哈希函数碰撞来保证安全性,因此也实现了高效证明。
这个思路直接借鉴自2015年推出的交互式预言机证明技术,简单来说是先把问题用密码学的方式打碎,然后验证者随机向示证者提出几个的问题,如果几轮下来,示证者都给出准确的回答,那么验证就通过了。
所以zk-STARK同样也只需要极少的计算资源就可以完成证明,但是它更安全,不存在答案泄露的风险。并且为了进一步确保安全性,还设置了争议时间延迟来作为缓冲。
??zk-SNARK和zk-STARK的区别
1.透明度
zk-SNARK的公共参考字符串通常由一个小团体来保管,因此有泄露的可能性,从而被恶意利用,如创建虚假证明。
zk-STARK则直接利用生成随机性的参数来验证,不需要任何第三方的「答案系统」,因此透明度大幅提高。
2.抗量子计算机攻击
zk-SNARK未来会轻易被量子计算机暴力破解。当然,量子计算何时到来还是个问题。
zk-STARK采用的是哈希函数碰撞的方法来证明,理论上量子计算机的暴力破解是无效的。
3.可扩展性
zk-SNARK的证明在链上更具可扩展性,zk-STARK在纯链上似乎没有优势。
StarkWare官网宣称是最快的,可能是因为zk-STARK允许链下进行大规模计算和存储,然后在链上完成验证,因此可扩展性显著提升,而成本显著降低。
总结
zk-SNARK技术被采用得最多,尤其是在以太坊扩容场景中。zk-SNARK主要是围绕「隐私保护」去做身份、支付、DeFi、资产证明等各种应用。
zk-STARK虽然也在发展之中,但技术尚不成熟,至少在通用性上受限,所以我们看到大多是围绕着「可扩展性」去做各种应用。
不过据StarkWare团队在2022年的说法,已经解决了可扩展性,该把目标瞄准「隐私保护」了,而方式是通过StarkNet的Layer3以及Layer4中以分形分层的方式解决,这似乎与zk-STARK证明系统本身没有直接关系。
至少就目前而言,大多数以太坊Layer2项目(zkSync、Aztec、Loopring、Scroll等)都采用的是zk-SNARK技术路线,除了通用性上受限,还有一个原因是普遍反馈说zk-STARK的开发难度过大……
当然长远来看,zk-STARK可承载的运算量更大,可能更有前景。
总的来说,zk-SNARK和zk-STARK的关系,?有些像Optimisticrollups和ZKrollups的关系,前者短期利好,后者长期利好。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。