来源:价值研究所
进入5月,国产大模型的风口非但没有熄火,反倒越烧越旺。过去一个星期,就有多家企业发布AI大模型相关产品:
5月5日,网易有道发布了基于“子曰”大模型开发的AI口语老师剧透视频,介绍其基于教育场景的类ChatGPT产品布局;5月6日,科大讯飞发布认知大模型“讯飞星火”,董事长刘庆峰表示有信心超越ChatGPT;同日,淘云科技发布“国内首个”儿童认知大模型“阿尔法蛋”……
在上述公司之外,还有很多企业宣布进军大模型,类ChatGPT产品正在密锣紧鼓研发中,预计不久便会正式上线。企业的热情毋庸置疑,AI大模型似乎已经不是一条选择题,而是必做题。
然而,狂热背后不乏担忧。大模型技术应用范围虽广,目前落地的场景毕竟有限。而这群入局大模型的企业,分别来自游戏、教育、动漫等诸多行业,和大模型的应用场景离得很远。
当国产大模型变得泛滥,我们该如何分辨优劣?
没技术不要紧,有公司靠“外援”捣鼓大模型
要评判一个大模型的优劣,首先看技术,其中最核心的是算法和算力,即训练参数量。因为参数量越大,系统的知识面就会越广,表现也会越稳定。资料显示,openAI在2020年推出的ChatGPT-3参数量已经达到1750亿,谷歌在一年后发布的PaLM则达到5400亿,更不用说最新的ChatGPT-4了。
新兴市场教父:比特币或跌穿1万美元,加密货币繁荣与美联储疯狂印钞有关:金色财经报道,新兴市场教父Mark Mobius表示,比特币价格可能在2023年跌破1万美元,较当前价格再下跌40%以上。此前,他曾准确预测比特币跌破2万美元。他表示,比特币已经跌破1.8万美元、1.7万美元的技术支撑位,那么距离跌破1万美元已经不远了。
他对媒体表示,他沽空比特币的理由是利率上升和美联储收紧货币政策。随着利率上升,持有比特币或者其他加密货币的吸引力不再那么大,因为仅仅持有比特币是无法赚取利息的。
他说,当然,有很多公司为加密货币存款提供5%甚至更高的利息,但这些公司基本都破产了。因此,随着投资者遭遇损失,人们会更害怕为赚取利息而持有加密货币。加密货币的繁荣与美联储疯狂印钞有关。在过去几年,美元货币供应量增长了40%以上。他解释道,当美联储开始收回流动性时,人们在市场上的投资能力就会变得困难。[2022/12/4 21:21:50]
参照此技术标准,我们可以精准识别一批蹭热点的企业:它们要么确实拿出了产品,但参数量和ChatGPT等有较大差距,功能也较单一;更有甚者,套用别家公司的硬件、数据库来预训练参数,本身缺乏核心技术。
当中的代表,有昆仑万维。
4月10日,昆仑万维宣布联合奇点智源研发“天工3.5”国产大语言模型。根据发布会上的介绍,“天工3.5”定位为“中国第一个真正实现智能涌现”的大模型产品,具备智能问答、聊天互动、文本生成等多种应用功能以及丰富的科学、技术、文化、艺术和历史知识储备。
梓岑:真正的疯狂要在减半之后 供求平衡被打破后到来:针对本次减半行情,HelloEOS创始人梓岑对金色财经表示:对减半行情高度怀疑很正常,对大多数人而言,看不到,看不懂,看不起,来不及,这个认知路径在减半这件事上同样适用。减半行情同样貌似“反常理”,很多人都需要真正经历过才能体会减半的威力。
而2020年的这次减半,更有里程碑式的意义,比特币的实际通胀将降低至1.8%左右,史上首次低于美元的增发比例。减半之前,实际上只是二级市场追“预期”而已,增量供给并没有变化。真正的疯狂要在减半之后,供求平衡真正被打破之后才会到来。[2020/3/3]
根据官方资料,昆仑万维最早在2020年布局AIGC业务,投入数亿元组建研发团队。去年12月,“昆仑天工”首次亮相,初代产品提供图像、音乐、文本及代码AI生成功能。作为对比,大模型领头羊openAI在2019年发布ChatGPT-1,每一代产品的研发周期都在一年左右。
乍一看,昆仑万维的“天工3.5”功能全面对标ChatGPT,比起百度“文心一言”、阿里“通义千问”等国产大模型毫不逊色。在研发速度上,昆仑万维也领先于大多数国内同行。不过昆仑万维的缺点也很突出——“天工3.5”是和阿里云合作的产物,后者的参数、硬件设备帮了昆仑万维很大忙。
事实上,昆仑万维一直抱紧阿里云的大腿。资料显示,过去几年昆仑万维的海外数据基本都在使用阿里云公有云储存服务,2020年布局AIGC时也是在阿里云的协助下建立算力集群。在“天工3.5”发布后,还有媒体爆出昆仑万维缺乏文本生成、数据处理专利的消息,和百度、阿里形成鲜明对比。
声音 | V神:在没有大型反DoS安全因素的情况下建立公链都是疯狂的:V神在推特中称,任何人在没有大型反DoS安全因素的情况下建立公链都是疯狂的。推特用户John Galt@Brainvelli回应称,收取燃气费并不是真正的反DoS。你不能向普通用户收取燃料费,他们不明白什么是燃料。我不是在谈论txfees。我的意思是将区块大小限制设置为区块链理论上可以处理的几倍,以防万一有人想出一种聪明的方法来创建异常高负荷的事务。[2019/8/22]
同样遭遇技术质疑的,还有“AI四小龙”之一的商汤科技。
商汤科技在4月10日发布了自研大模型系统“日日新SenseNova”,内含AI数字人视频生成平台“如影”,3D内容生成平台“琼宇”和“格物”,类ChatGPT产品“SenseChat”等产品。别人都是发布单个产品,商汤科技一次过拿出一套“全家桶”,可见其野心之大。
然而,商汤的大模型全家桶在发布那天就有翻车迹象。演示视频公布后,就有媒体和网友发现商汤“妙画”生成的图片和AI网站Civitai的图片撞车,甚至还有来自Civitai的文字注释。SenseChat则在一些基础问题上表达含糊不清,其训练参数量也遭到质疑。
在价值研究所看来,缺乏数据源,是昆仑万维和商汤科技共同的命门。
“文心一言”背后有百度的海量搜索数据和语料库,阿里的“通义千问”则有来自电商、云计算等领域的语料库,流量大、用户覆盖面广,能提供足够的参数。缺乏面向C端用户的通用产品、没有参数积累,强行上马大模型,昆仑万维和商汤科技的尴尬处境完全可以预料。
EOS最富地址排行榜第二位疯狂“吸筹”:两日买入约2亿元EOS:据etherscan.io数据显示,截至目前,EOS最富地址排行榜第二位地址近两日共收了2090148.055个EOS,价值约2亿元人民币。目前该地址共持有约5600万枚EOS,总价值7.48亿美元,占EOS总市值的5.6%。另一个排名25位的大户地址近两日也“吸筹”约1亿人民币。[2018/5/17]
没应用场景又如何?这些企业硬要和AI攀关系
除了缺乏核心技术、产品缺陷明显的昆仑万维等企业,另一类企业的行为更让人迷惑:在缺乏应用场景的情况下,硬要给自身产品贴上大模型标签、“硬蹭”热点。
这一类企业,以专注C端服务的互联网公司为主,尤其是近年来处境不佳的教育、科技金融、游戏公司。
比如专注于智能教育硬件研发的淘云科技,在5月6日发布了首个儿童认知大模型“阿尔法儿童认知大模型”和GPT机器人,并宣布把平台的儿童原始语料加入科大讯飞的“讯飞星火”大模型中。同样来自教育领域的学而思,也在近日宣布研发数学大模型MathGPT,目前已取得阶段性成果,预计年内推出。
这类企业最大的问题在于,大模型的应用场景、目标用户和它们的业务有巨大差异。强推大模型,根本无法为它们的用户带来多少帮助。
根据淘云科技董事长刘庆升的说法,“阿尔法儿童认知大模型”基于儿童场景提供更贴近幼儿理解力的生成式内容,让儿童用户在轻松的氛围下积累新知识。问题在于,类ChatGPT应用仍无法保证100%准确率,常识性的错误屡见不鲜。对于认知能力有限的儿童来说,并不稳定的大模型反倒可以带来反作用。
日本交易平台首席执行官认为 投资理念保守的日本人在比特币投资方面尤为疯狂:据纽约时报,全球规模最大的比特币交易平台bitFlyer首席执行官狩野雄三(Yuzo Kano)不久前表示,日本人的投资理念一贯保守,但一旦被触动,他们就会全数押注,比特币投资方面尤为如此。[2017/12/11]
当然,上面这些公司蹭热点的目的虽然很明确,但好歹拿出了实打实的产品或规划。还有一些企业,不仅业务场景和大模型相去甚远,甚至还没有拿出实际产品就开始往自己脸上贴金。
比如定位于“国漫IP孵化平台和漫画分享社区”的快看漫画,就在4月27日宣布成立AIGC事业部。创始人兼CEO陈安妮更是在内部信中表示,AI将会给内容产业带来“颠覆式”生态变革。
再比如最近一边捣鼓直播电商、一边忙着进军本地生活的小红书,也没忘记筹备大模型团队。根据36氪报道,小红书在今年3月开始组建研发团队,主要成员来自广告NLP技术部门。4月,小红书悄悄上线了一款名为“Trik”的AI创作应用,主打AI绘画,但没有大规模宣传,至今没有引发多少关注。
总的来说,这两类企业的大模型布局都经不起推敲。但蹭上大模型风口,确实为其带来了可观的流量,也掀起资本市场的狂欢。前面提到昆仑万维,在发布“天工3.5”次日股价暴涨16%。或许正因为市场过于狂热,才会反过来迫使这些企业主动迎合热点。
可惜这种热度是无法持续的,而且还会遭到监管机构的重点关照。在“天工3.5”发布次日,昆仑万维就收到了深交所的关注函,要求前者结合项目研发进度、行业政策风险、对公司财务的影响等情况,说明该业务可能面临的风险。
虽然深交所没有把话挑明,但明眼人都看得出这封关注函写满对昆仑万维蹭热点的怀疑。在价值研究所看来,蹭热点的行为正在损坏行业生态。给大模型降降火、让市场回归理性,对踏实搞研发的企业来说非常重要。
追赶ChatGPT,一场艰苦的马拉松竞赛
不可否认,除了上面这些蹭热点的公司外,国内有不少企业在认真打磨大模型产品,也有一定的技术积累和丰富的应用场景。不过从百度、阿里,再到360,几乎所有头部企业都承认自己的技术不如openAI的ChatGPT。
5月7日,周鸿祎应邀来到东方甄选直播间,和俞敏洪、董宇辉大谈国内的大模型创业热潮。周鸿祎直言,openAI比国内企业领先至少两年,国产大模型有机会在一年内追上ChatGPT-3.5,但openAI已经开始训练ChatGPT-5了。
“上来就说能超越ChatGPT,那叫吹牛。”
周鸿祎最后这番话,不少媒体认为是在影射5月6日发布“讯飞星火”认知大模型的科大讯飞。科大讯飞董事长刘庆峰在发布会上表示,“讯飞星火”在文本生成、知识问答、数学能力上已经超过ChatGPT,目标是到今年10月,通用认知能力对标ChatGPT,并在中文上超越ChatGPT。
周鸿祎是否意有所指不得而知,可以肯定的是,投资者、用户对国产大模型的耐心正在流失,要求变得更加苛刻,外部的竞争也更加激烈——留给国产大模型的时间已经不多了。
5月4日,微软宣布Bing预览版全面开放,该系统此前已接入openAI的ChatGPT-4;一天后,谷歌也宣布向所有拥有Wordspace账号的用户开放BardAI工具访问权限。
微软和谷歌先后走向开放,意味着新一轮用户争夺战正式打响。一旦它们渗透进国内市场,面对技术上的差距,国产大模型并没有太多应对方法。比起那群蹭热点的企业,追赶openAI的骨干力量更值得我们关注——特别是百度、阿里、腾讯三巨头,周鸿祎治下的360,疑似被其揶揄的科大讯飞实力也不容小觑。
这几家公司的优势是相似的:雄厚的资金储备;拥有诸多面向用户的产品/服务,语料库十分丰富;主营业务贴近大模型应用场景,如百度和360的搜索,腾讯的社交媒体,阿里的云计算和电商,科大讯飞的智慧办公等。现阶段,这些企业的产品距离ChatGPT当然还有一定差距,但并非没有追赶的机会。
要知道,即便是技术领跑全行的openAI,也有自己的苦恼。过去一年,随着ChatGPT走红openAI的估值也是一路走高,成为全球范围内升值最快的独角兽——可惜随之飙升的,还有亏损额。
据外媒报道,openAI上一财年净亏损达到5.4亿美元,同比几乎放大一倍。每一次预训练参数都要耗费巨资,要提升系统稳定性又必须不断加大参数量和预训练频次,亏损自然成为无解难题。国盛证券的研报指出,通过测算,2800亿参数量的大模型预训练成本约为200万美元/次,谷歌的PaLM号称拥有5400亿参数,单次预训练成本将高达1200万美元。
今年2月推出的付费版ChatGPT和其他商业化尝试收效甚微,短时间内不可能覆盖预训练所需成本。CEOSamAltman曾暗示,公司未来几年可能需要筹集约1000亿美元的资金,才能进一步提升技术,打磨下一代产品。
openAI的经历表明,AI大模型研发如同一场漫长且艰难的马拉松——不要总是奢望弯道超车,踏踏实实和参数打交道是成功的基础。
写在最后
水能载舟亦能覆舟,狂热的市场氛围既给企业带来了资金和关注度,也带来了难以预估的风险。近段时间,证监会等监管机构已经加大管控力度,不少公司也主动出面自证清白:据不完全统计,4月底至今已有世纪天鸿、万兴科技、中科信息、唐德影视等多家上市企业发布股票交易异常波动公告,澄清自身业务和AI、大模型的关系。
经过移动互联时代的洗礼,蹭热点、追风口的情况太过常见了。似乎任何一个风口都逃不过从萌芽到爆发,再走向混乱、重塑秩序的过程。但在乱战过后,有的风口出清泡沫、置之死地而后生;有的赛道却彻底沉沦,如一颗流星般结束自己绚烂却短暂的一生。
走在时代前沿的AI大模型,似乎更有可能成为前者,不过需要所有从业者、监管机构的共同努力才能保证健康发展。大模型是一条技术门槛、资金门槛都很高的赛道,蹭热点的企业注定无法长久。加强监管、净化行业环境、驱逐不良玩家可能会带来短期混乱,但对行业的长期发展肯定是有益的。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。