回顾
IPFS-InterPlanetaryFileSystem星际文件系统,是一个点对点的分布式文件存储系统,IPFS的愿景是构建一个全世界的分布式网络,用来替代传统中心化的服务器模式,所有的IPFS节点组成一个分布式网络,每个节点都可以存储文件,用户可以从IPFS构建的网络中以DHT(DistributedHashTable,分布式哈希表)?的方式获取文件,从而实现了新一代的完全去中心化的网络,旨在取代现有的万维网。IPFS功能很丰富,如DHT组网,文件存储,Bitswap文件交换等功能。
文件存储和文件交换的技术详解可以通过之前的推文内容进行了解,今天我们来了解这个文件系统的“地基”——网络模块。
IPFS网络初识
IPFS是一个开源项目,要达到它声称的构建一个全世界的分布式网络的目标,那么他必然要先解决不同国家、不同地区节点的连接问题。
动态 | 上海国际医药供应链信息服务平台揭牌,采用区块链技术 实现信息溯源:上海国际贸易单一窗口“区块链+”新闻发布会11月7日上午在国家会展中心(上海)举行。会上,上海市商务委(上海市口岸办)会同上海市药监局联合打造的上海国际医药供应链信息服务平台正式揭牌。这是上海国际贸易单一窗口针对单一垂直行业进行深度服务的首个平台。
据介绍,该平台采用区块链技术,实现了分布式账本、数据防篡改和信息可追溯,为进口医疗器械和药品等行业上下游企业提供从源头到消费的“端到端”、“可视化”供应链信息服务,提高了监管效率和精准度、有效减低监管成本和企业负担。[2019/11/7]
首先,看一下IPFS网络部分配置,如下图所示,红框内部的Swarm是IPFS监听的网络地址,其中支持ipv4和ipv6协议,且默认支持QUIC协议。
动态 | 北京政务服务将依托区块链等新技术 探索开展智能审批:据新京报消息,北京市政务服务工作大会昨日召开,对全市2019年政务服务工作提出了一系列目标和要求。今年,“减证便民”行动将继续深入开展,将以材料较少、流程简易、涉及审批部门不多的事项为突破口,探索开展智能审批。依托人工智能、大数据、区块链等新技术,通过信息共享由系统自动开展审批,实现即报即批、即批即得。[2019/1/24]
*QUIC协议是由google最先提出的,目前已经提交给互联网工程任务小组,成为了正式的网络规范,相对于TCP来说QUIC网络传输协议的传输速度更快。
IPFS节点启动之后日志如下图所示,可以看到IPFS节点监听了以下网络地址,其中包括本地的、局域网、广域网的地址,最后还有/p2p-circuit地址。
澳洲小型供电网络将引用区块链技术 促进向可再生能源的转型:据悉尼先驱晨报消息,Latrobe河谷地区将新建立一家采用区块链技术的太阳能供电网络。该供电网络将连接200家牧场、20家商业和150家居民住处,使用区块链能源交易平台Exergy。澳大利亚可再生能源署负责人Ivor Frischknecht表示,这个试点项目将是革新农业部门的第一步,将促进维多利亚州的煤电厂向可再生能源电厂转型。[2018/5/7]
问题来了,为什么需要监听这么多地址?
那是因为IPFS是一个开源项目,为了让全世界各地的节点连接起来则必须要解决各种网络情况下节点连接的问题。
监听本地地址,这样本地启动多个IPFS节点,它们之间可以以该地址进行连接,监听局域网地址,这样内网内启动多个IPFS节点,它们之间可以以该局域网地址相互连接,监听广域网地址,这样公网中启动多个IPFS节点,它们之间可以以该广域网地址进行连接。
NASA研究以太坊区块链技术 将用于深空探测:据ccn消息,美国航天局(NASA)资助并共同运作的一个研究项目正在考虑利用以太坊区块链的智能合约技术来实现航天器机动自动化,同时避免空间碎片。[2018/4/17]
通过上述方式就解决了大部分网络情况下的IPFS节点的网络连接问题:
2个节点都在同一主机:通过127.0.0.1地址连接
2个节点在同一个内网内:通过局域网地址连接
2个节点都有公网地址:通过公网地址连接
1个节点在内网,1个节点在公网:内网的节点通过在公网节点的公网地址连接
这里有一个问题,如果2个节点处于两个不同内网环境,由于存在NAT设备,NAT设备可能是对称型,对称型的NAT设备是没有办法穿透的,所以IPFS提供了relay的方式解决不同内网环境下节点的连接问题,上面提到的监听/p2p-circuit地址则是为了解决该问题,对于2个处于不同内网环境不能直接连接的节点,通过配置relay节点中转从而建立连接。
数据分析平台Biotron新项目利用智能定位技术 将以BTRN币奖励用户:数据分析平台Biotron开发了一项策略,在用户通过其应用程序和其他工具开始分享数据之前先奖励用户。该公司将使用智能定位技术(location intelligence),向品牌提供其客户群体及连锁店的分析数据。作为回报,用户在加入平台之前先获得收入的一部分。一旦他们选择加入Biotron的移动应用并开始提供的数据,他们将能够获得BTRN币或现金。[2018/3/22]
至此,IPFS解决了不同网络环境下的节点之间建立连接的问题,下面我们来看一下IPFS是如何构建大规模的分布式节点网络,将处于全世界的不同地区的各个节点连接起来的。
IPFS网络构建
IPFS网络构建的过程可以看作是两个阶段:
▲?Bootstrap阶段
IPFS节点在启动之前需要配置它的Bootstrap节点,配置文件中相关配置如下图所示,Bootstrap配置中配置了IPFS节点启动时需要连接的所有种子节点列表,这些节点地址列表信息是默认的,如果需要搭建IPFS私有网络可以修改成自己的种子节点列表。默认提供的种子节点都是具有公网地址的节点,IPFS节点启动的时候首先连接该种子节点,后续通过该种子节点去发现IPFS网络中更多的节点,从而进行连接,也就是DHT组网阶段。
▲?DHT组网阶段
IPFS节点连接种子节点成功以后则去通过DHT去发现其他节点,关于DHT的详解可以看这篇文章《Libp2p中DHT和Bitswap详解》。
发现其他节点之后则尝试进行连接,连接成功的节点会加入到该节点的节点列表,以便后续可以直接与该节点通信,考虑到全世界的IPFS节点规模很大,不可能每个节点和其他节点保持长连接,所以对每个节点的连接数量做了限制,一般节点连接数量都在1千以下,对于没有连接的节点需要通信的话,可以通过DHT找到该节点地址,然后连接该节点进行通信,这样就构成了大规模的分布式节点网络。
我们可以通过一个示例展示上述过程。下图是一个常见的网络拓扑架构,有三个网络分别连接了Internet,IPFSnode1部署在具有公网ip的服务器上,外部可以直接访问该节点,IPFSnode2和IPFSnode3都部署在对称型NAT设备后面,外部不能访问该节点。
在上面的网络架构下,处于公网的IPFSnode1作为种子节点,种子节点最先启动,然后IPFSnode2,node3,node4,node5的种子节点配置成IPFSnode1,分别启动后首先连接IPFSnode1,连接成功后通过DHT发现其他节点最后分别连接,对于IPFSnode1,它连接的节点地址列表如下图所示,由于IPFSnode2,node3,node4,node5均处于NAT设备后面,所以IPFSnode1节点列表中这些节点的端口都是NAT设备映射后的端口。
对于IPFSnode3来说,它的节点地址列表中,IPFSnode1的地址是公网地址,由于IPFSnode3和IPFSnode2都处于NAT设备后面,不能直接连接,所以IPFSnode2的地址是relay地址,IPFSnode1节点作为relay节点,IPFSnode3给IPFSnode2发消息时通过IPFSnode1转发,relay地址格式为:
Relay节点的地址/p2p-circuit/p2p/目标节点id
而IPFSnode3的节点地址列表中,IPFSnode4和IPFSnode5的地址均为局域网地址,这样就完成了公网节点、处于NAT设备后的局域网节点的组网过程。
总结
以上就是IPFS网络的组建过程,为了方便描述只是以几个IPFS节点为例。
实际上IPFS的这种网络组建方式也能很好地支持超大规模节点的组网,当节点规模很大的时候,设置数十个节点作为种子节点,通过DHT组网就能完成数万甚至更多节点的组网,此时每个节点的长连接数量保持在数百个,后续节点间通信时,如果还没有建立连接,可以通过DHT根据节点id查询该节点的地址信息,然后通过该地址连接该节点最后完成通信过程。
IPFS网络的这种组建方式也非常值得分布式系统学习和借鉴。
作者简介
姚文豪来自数据网格实验室BitXMesh团队数据平台架构师
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。