PLATO:隐私计算词典丨联邦学习为何如此博人眼球?_PlatON

前言:隐私计算赛道作为当下的风口赛道,无数企业纷纷涌入,抢跑占道。作为一家专注于区块链隐私计算赛道科普入门的垂直媒体,同时也是针对隐私计算兴趣者开放的“纯天然”、低门槛入口,我们汇总并分类了隐私计算行业内晦涩难懂的名词,编写了「隐私计算词典」板块,帮助大家理解、学习。?

此篇,我们来了解隐私计算技术架构的第三部分——联邦学习。

近年来,从无人驾驶汽车,到AlphaGo击败顶尖的真人围棋手等等,AI人工智能在科技领域的发展着实吸引了足够多人的眼球。

然而,发展至今的AI人工智能仍面临两大现实问题:

行业数据分散且收集困难,数据以孤岛的形式存在;隐私得不到保障,安全共享数据成为了一道壁垒。针对此,人们提出了一种名为「联邦学习」的隐私计算技术。

隐私计算网络Oasis宣布“Sapphire”现已上线测试网:7月21日消息,隐私计算网络Oasis宣布第一个与EVM兼容的隐私ParaTime “Sapphire”现已上线测试网。

据悉,隐私计算网络Oasis采用创新性的分层网络架构,将共识操作与计算分离成两层,允许多个Para Times并行处理交易,且能够为开发人员提供新的动态计算环境,实现更好的可扩展性和通用性。此前,Oasis已推出EVM兼容Para Time Emerald。[2022/7/21 2:29:16]

联邦学习,又名联邦机器学习、联合学习。它是AI人工智能的一门分支技术,旨在保障大数据交换时的信息安全、数据保护,在合法合规的前提下,有效帮助多行业的数据进行机器学习建模。

Coinbase上线隐私计算网络Oasis (ROSE):4月26日消息,Coinbase 上线隐私计算网络 Oasis (ROSE),现已开放充值。若满足流动性条件,交易将于太平洋时间 4 月 26 日星期二上午 9 点或之后开始,分阶段推出 ROSE-USDT 交易对。[2022/4/26 5:11:15]

隐私保护是联邦学习最主要的关注点,在实际的应用中,联邦学习通过将数据的不同特征在加密的状态下加以聚合,以增强机器学习模型能力,再通过共享数据模型,避开原始数据共享,进而保证了数据的安全性。?

利用联邦学习的特点,即使是不导出企业数据的情况下,也能为三方或多方建立机器学习模型,既充分保护了数据隐私和数据安全,又为客户提供个性化、有针对性的服务,实现了互惠互利。?

阿里达摩院发布2022十大科技趋势:全域隐私计算和混合现实互联网入选:12月28日消息,阿里巴巴达摩院发布2022十大科技趋势,提出了2022年可能照进现实的十大科技趋势,覆盖人工智能、芯片、计算和通信等领域,分别是:趋势一,AI for Science;趋势二,大小模型协同进化;趋势三,硅光芯片;趋势四,绿色能源AI;趋势五,柔性感知机器人;趋势六,高精度医疗导航;趋势七,全域隐私计算;趋势八,星地计算;趋势九,云网端融合;趋势十,XR互联网。[2021/12/28 8:08:57]

同时,我们可以利用不同类别的联邦学习技术来解决数据异质性问题,突破传统AI技术的局限性。依照参与建模的数据源分布,联邦学习可分为横向联邦学习、纵向联邦学习和联邦迁移学习三类。?

横向联邦学习假设收集两个数据集,这两个数据集用户特征重叠多,而用户重叠少。我们把数据集按照用户维度切分,取出双方用户特征相同,而用户不完全相同的部分数据作为机器的训练数据,这种模型称为横向联邦学习。?

PlatON 发布2.0 白皮书:聚焦区块链、隐私计算与人工智能三大技术:9月14日,隐私AI计算网络PlatON于社交媒体发布其白皮书2.0版本内容,正式确立以区块链、隐私计算与人工智能三大技术为核心,全面建设去中心化的隐私计算网络、人工智能市场、 AI 协作网络三大阶段性目标。

据悉,PlatON 2.0将通过建立去中心化的隐私计算网络,形成去中心化的人工智能市场, 任何人都可以在隐私被保护的前提下通过PlatON 2.0 连接数据、算法、算力训练人工智能模型。PlatON 2.0 为AI提供了三个关键要素:数据、模型和计算能力,从而实现自组织的协作的人工智能网络。

今年6月PlatON刚发布过隐私计算白皮书,其中描述的各项隐私计算技术也将在PlatON2.0上实现。[2021/9/14 23:24:07]

例如,两个不同行政区的银行,用户群体分别来自所在行政区,重叠部分少。但是同作为银行,业务类似,因此数据集收集的用户特征则大体相同。因此,横向联邦学习模型收集的是两个数据集不完全相同的用户部分。?

如下图所示:?

纵向联邦学习与横向联邦学习相反,在两个数据集用户重叠多、用户特征重叠少的情况下,纵向联邦学习把数据集按照数据特征维度切分,取出双方用户相同,而用户特征不完全相同的部分作为机器训练数据。?

例如,同一个行政区的银行和商超,其收集的数据用户群体大致类似,但银行和商超收集到的用户特征基本不同。因此,纵向联邦学习模型收集的是两个数据集不完全相同的用户特征部分。?

如下图所示:

联邦迁移学习在用于机器学习的数据集样本用户与用户特征重叠都较少的情况下,通常不对数据进行切分,而是引入联邦迁移学习,来解决数据不足的问题,从而提升模型的效果。

具体地,可以扩展已有的机器学习方法,使之具有横向联邦学习或者纵向联邦学习的能力。?例如,收集一家位于北京的银行和一家位于上海的商超的数据,由于受到地域限制,用户群体交集很小;同时,由于银行和商超类型的不同,二者收集的数据特征也基本无重合。?

引入联邦迁移学习,首先可以先让两个数据集训练各自的模型,之后通过加密模型数据,避免在传输中泄露隐私。之后,对这些模型进行联合训练,最后得出最优的模型,再返回给各个企业。?

如下图所示:?

多种类别的联邦学习方式使得机器学习模型更加具有通用性,可以在不同数据结构、不同行业间发挥作用,没有领域和算法限制,同时具有模型质量无损、保护隐私、确保数据安全的优势。?

在实际的应用中,类似销售、金融等行业,由于知识产权、隐私保护和数据安全等因素限制,数据壁垒很难打通。

联邦学习成为了解决这些问题的关键,在不影响数据隐私和安全的情况下,对来自多方的数据进行统一的建模,进行机器学习模型的训练,这些企业之间就能更好地进行数据协作。?

可以说,联邦学习为构建跨行业、跨地域的大数据和人工智能生态圈提供了良好的技术支持。?考虑到在整个训练过程中,进行模型更新的通信仍然可以向第三方或中央服务器显示敏感信息,因此联邦学习技术广泛地与安全多方计算、TEE或者区块链等技术结合应用,来增强联邦学习的隐私性和去信任。

但目前已有的方法通常以降低模型性能或系统效率为代价提供隐私,因此,如何在理论和经验上理解和平衡这些权衡,将是实现联邦学习技术广泛应用落地的一个相当大的挑战。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

区块博客

[0:15ms0-7:591ms