SYN:a16z:生成式AI在游戏领域的机会_SYNC

原文标题:《The Generative AI Revolution in Games》

原文作者:James Gwertzman、Jack Soslow

原文编译:阿法兔研究笔记

A16Z 最近写了一篇很有意思的文章,谈到他们认为的生成式 AI 和游戏结合在一起的机会在哪,笔者翻译后对部分内容进行了注解。文章主要两部分:第一部分,包括 A16Z 对游戏领域生成式 AI 的观察和预测;第二部分,包括 A16Z 对游戏 + 生成式 AI 领域的市场生态的判断(第二部分将会在下一篇文章发出来,包括笔者对各个公司的解析)。

游戏设计领域存在不可能三角:成本、质量或速度这三项中通常只能取两项,而现在,设计师可以通过这些 AIGC 工具,不再需要花费很多人工的制作时间,只要几个小时就能创造出高质量的图像,而这其中,真正具有变革意义的是,任何人只要学会几个简单的工具,就可以获得这种具备创造性的能力。

这些工具,能够以快速迭代的方式创造出无穷无尽的变化,并且一旦经过培训,整个过程是实时的,也就是说,结果几乎是即时可用的。

自 Real-time 3 D 技术出现以来,还没有能够对游戏产生如此大潜在改变的技术(有了实时 3 D 的软件,整个虚拟世界可以眼以更快的速度进行数字渲染,为用户提供了更具吸引力和身临其境的体验)。

那么,生成式 AI 的发展方向是什么?又将如何改变游戏?首先,我们回顾一下生成式 AI 的概念。

生成式 AI 是机器学习的一个类别,计算机可以根据用户的输入 / 提示,生成原创的新内容。目前这项技术最成熟的应用主要在文本和图像领域,不过几乎所有的创意领域都有类似的进步(生成式 AI 的技术应用),覆盖动画、声音效果、音乐,甚至是对具备完整个性的虚拟人物进行原创。

当然,人工智能在游戏中并不新鲜。即使是早期的游戏,如雅达利的《Pong》早就有计算机控制的对手和玩家进行对战。(笔者注:游戏开发商雅达利,创办时期在微处理器诞生后不久,在 1972 年推出首款街机 Pong,奠定街机鼻祖地位。 1974 年,苹果的乔布斯加入雅达利,负责开发电子游戏)

a16z将6750枚MKR转移至新地址:7月27日消息,据Lookonchain监测,a16z将6750枚MKR转移至新地址,价值约825万美元,或将再次进行抛售。[2023/7/27 16:02:26]

然而这些计算机中的虚拟对手和我们今天讲的生成式人工智能并不一样,这些计算机对手只是游戏设计师精心设计的脚本程序,它们确实模拟了一个人工智能的对手,但它们不能学习和迭代,水平和编写它们的工程师一样。

那么,生成式 AI 和游戏的结合,技术底层有哪些变化?微处理器的速度更快,云计算和各种计算能力更强,具备建立大型的神经网络的潜力,可以在识别高度复杂领域的模式和表征。(Thanks to faster microprocessors and the cloud. With this power, it’s possible to build large neural networks that can identify patterns and representations in highly complex domains. 笔者注:这里的意思是越来越快的微处理器单体能力乘上云计算的规模化系数,使建立能够支持复杂的模式识别,啥是模式识别?模式识别是指对表征事物或现象的各种形式的 ( 数值的、文字的和逻辑关系的 ) 信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程, 是信息科学和人工智能的重要组成部分)

本篇文章主要两部分:

第一部分,包括 A16Z 对游戏领域生成式 AI 的观察和预测;

第二部分,包括 A16Z 是我们对游戏 + 生成式 AI 领域的市场生态:Market Map ,这部分概述了各个细分市场,指出了每个细分市场的主要公司。

一些假设:

首先探讨一下文章余下部分所依据一些假设:

 1. 通用式人工智能的研究(成功)数量将继续增长,出现更多更有效的技术。

a16z crypto推出新OP Stack rollup客户端:金色财经报道,a16z crypto工程师ncitron.eth发推称,推出用Rust编写的OP Stack rollup客户端“Magi”,“Magi”执行(op-node)相同的核心功能,并与执行节点(如op-geth)一起工作以同步到任何OP Stack链,包括Optimism和Base。作为一个独立的实现,Magi旨在增强整个OP Stack生态系统的安全性和活跃性。

“Magi”正在开发中,可能需要数月的时间才能成为op-node的可行替代方案。[2023/4/20 14:14:36]

上图是每月 arXiv 中发表的关于机器学习或人工智能的学术论文数量。正如图中所示,论文的数量正在呈指数级增长,且没有放缓的迹象,而这部分数据仅仅包括已经发表的论文,还有许多研究并没有公开发表,而是直接应用于开源模型或产品研发,这些开源模型和产品,带来了爆炸式的创新。

 2. 在所有娱乐类目中,游戏将成为收到生成式人工智能最大影响的领域。

就目前所涉及的资产类型( 2 D 艺术、 3 D 艺术、声音效果、音乐等)而言,游戏是娱乐类目中最复杂的一种,同时,游戏也是互动性最强的,它非常强调实时体验。这就为新的游戏开发者创造了一个非常高的进入门槛,也为制作一个真正的 3 A 大作游戏创造了高昂的成本,这些存在的门槛和成本问题,为生成式人工智能在游戏领域的破坏性创新,创造了巨大的机会(如下图):

举个例子,像《荒野大镖客:救赎 2 (Red Dead Redemption 2 )》这样的游戏是有史以来制作成本最昂贵的游戏之一,它的制作成本近 5 亿美元。而荒野大镖客是也是市场上巨具备最棒的视觉效果之一的游戏,花了近 8 年的时间来制作,有 1000 多个游戏角色(并且每个角色都有自己的个性、和专属配音演员),一个近 30 平方英里大小的游戏世界, 6 个章节的 100 多个任务,以及由 100 多个音乐家创作的近 60 小时的音乐,这个游戏的所有内容涉及的制作都非常庞大。

a16z CTO:“橙球”谜语推文并非是要推出L2:4月19日消息,a16z 首席技术官 Eddy Lazzarin 回应 a16z 工程师 ncitron.eth 发布的“橙色圆球”即将推出谜语推文称,这并非 L2。a16z 工程师 ncitron.eth 发布橙球推文后,与 Optimism 图像的相似性导致交易者猜测 a16z 可能计划推出自己的 Layer2 区块链,OP Token 此后上涨 3%。

此前报道,Coinbase 于 2 月份发布包含蓝色圆球的推文,并基于 OP Stack 构建了一个全新 L2 区块链 Base。(CoinDesk )[2023/4/19 14:12:34]

那么,如果我们将《荒野大镖客:救赎 2 》与《微软模拟飞行》相比,《微软模拟飞行》这个游戏更为巨大...因为微软飞行模拟器的玩家能够在游戏中围绕整个地球飞行,所有 1.97 亿平方英里的地方。那么,微软是如何打造这样一个大型游戏的呢?主要是通过人工智能来完成,微软公司与 blackshark.ai 合作,对人工智能进行训练,从二维卫星图像生成无限逼真的三维世界。

blackshark.ai 是个啥公司?

blackshark.ai 是通过机器学习技术,提取全球范围内的地球基础设施的公司,从全球的卫星和航空图像中提取数据,用人工智能基于目前地理数据的数字孪生场景,这些结果可用于可视化、模拟、绘图、混合现实环境和其他企业解决方案,而技术本身具备的云计算更新能力,能够实时更新这些数据。

这仅仅是一个例子,如果不使用人工智能技术,《微软模拟飞行》这款游戏实际上是不可能制作完成的。除此之外,游戏的成功还要归功于这些模型可以随着时间的推移不断改进,例如,可以加强「highway cloverleaf overpass」模型,通过人工智能运行整个建造过程,游戏中的整个地球上的所有的高速公路立交桥都可以立马得到改进。

Web3游戏发行商Carry1st完成2000万美元融资,a16z领投:1月19日消息,Web3 和社交游戏发行商 Carry1st 在 A 轮融资中筹集了 2000 万美元,以进一步扩大在非洲的产品开发,本轮投资由硅谷风险投资公司 Andreessen Horowitz (A16z)领头, Avenir 和谷歌母公司 Alphabet 参投,Carry1st 的现有支持者,包括 Riot Games、Konvoy Ventures、Raine Ventures 和 TTV Capital 继续支持,一些著名的个人投资者也参与其中,包括Nas和Chipper Cash、Sky Mavis 和Yield Guild Games的创始人。

Carry1st 将利用这笔现金注入来扩大其内容组合,壮大内部开发团队,并引领新的增长战略以吸引数千万新用户。Carry1st 表示,它提供了一个全栈发布解决方案,为其合作伙伴处理用户获取、现场运营、社区管理和货币化。其增长战略的一个关键支柱是开发基础设施以支持“玩赚”(P2E)游戏,这使用户可以通过他们的游戏体验获利。(Cointelegraph)[2022/1/20 9:00:06]

 3. 游戏制作中涉及的每一个资产都会有一个生成的 AI 模型

到目前为止,像 Stable Diffusion 或 MidJourney 这样的 2 D 图像生成器,由于其能够生成的图像十分抢眼,占据了目前生成式人工智能的大部分流行的兴奋点。而现在已经出现了用于游戏中几乎所有资产的生成式人工智能模型,从 3 D 模型到角色动画,再到对话和音乐。(下一篇文章会讲一下具体公司的市场生态 Market Map)

 4. 内容成本将持续下降,某些情况下的内容的成本会降为零

当我们和尝试将生成式 AI 人工智能整合到制作场景的游戏开发者交谈时,最大的兴奋点在于,制作游戏的时间和成本都会大幅降低。一位开发者告诉我们,为一张图片生成概念图的时间从 3 周下降到 1 小时。我们相信,在整个游戏流程的制作过程中也可以实现类似的「降本增效」。

Rally联合创始人成立加密风投工作室SuperLayer,a16z创始人等人承诺投资:10月30日消息,Rally联合创始人Kevin Chou和Mahesh Vellanki周五宣布成立SuperLayer。SuperLayer是一家加密风险投资工作室,帮助直接在Rally网络上构建Web 3项目。据悉,加密社交平台Rally允许创作者和艺术家发行自己的数字货币。在招聘产品经理以进一步发展业务之前,该风险投资工作室将在内部启动项目。

SuperLayer得到知名投资者的支持承诺,包括风险投资公司Andreessen Horowitz(a16z)联合创始人Marc Andreessen、Chris Dixon、Paris Hilton、Nas、Michael Ovitz、Carter Reum等。最初,SuperLayer将部署2500万美元的种子投资,并将继续持续筹集资金。(Cointelegraph)[2021/10/30 6:21:21]

值得注意的是,艺术家并没有被取代的危险,这意味着艺术家不再需要自己亲自上手去完成所有的工作:艺术家和设计师们可以设定初始的创意方向,然后将大部分耗时和技术执行工作交给人工智能。在这一点上,就像早期手绘动画的画师一样,高度熟练的「绘画专家」描绘出动画的轮廓,然后由成本相对较低的画手们完成耗时的工作,为动画胶片上色,填充线条,只是我们谈到的是游戏创作领域的应用。

 5. 我们仍然处于这场行业变革领域的初期,尚且有很多部分需要完善

尽管最近很多人都很激动,但我们仍然刚刚处于起跑线。在大家清如何真正应用这种新技术与游戏领域的结合时,还有大量的工作要做,而对那些之前、以及迅速进入这个新领域的公司来说,将会存在巨大的机会。

鉴于以上的假设,本文对于游戏行业如何被改造这块,进行了预测和推演。

 1. 学习如何有效地应用生成式人工智能,能将成为一种市场技能。

已经有先驱分子能比其他人更有效地应用生成式人工智能。为了最好的用好这项新技术,还需要了解各种工具和技术,并知道如何对它们进行组合应用。我们预测有效地应用生成式人工智能,本身就会成为非常有潜力的技能,因为它可以将艺术家的创造性视野与程序员的技术能力结合起来。

Chris Anderson 有句名言:「Every abundance creates a new scarcity 丰富将会造就新的稀缺。」随着内容逐渐变得更为丰富,那些了解如何与人工智能工具进行最为高效的合作的艺术家将是最紧缺的。

举例:将生成式人工智能用于艺术品的生成,也会带来一些挑战,包括:

保持连贯性:需要能够对游戏中的各类资产进行修改或编辑,对于人工智能工具,这意味着需要能够以相同的信号来复制(数字)资产,这样我们才可以对它进行修改和挑战。这可能很会棘手,因为同样的提示,可能会产生截然不同的结果。

保持风格的一致性:单个游戏中的所有艺术作品都要保持一致的风格,这就意味着,人工智能的工具需要经过训练或与艺术家 / 设计师的既定风格相联系。

 2. 游戏开发门槛的降低,将会导致更多的冒险和创造性探索

我们可能很快就会进入一个新的游戏开发「黄金时代」,较低的准入门槛会导致出现更多创新和创造性游戏,而这不仅仅是因为较低的制作成本导致了游戏制作商需要担的风险较低,还因为这些工具代表了为更多受众创造高质量内容的能力。

 3. 由人工智能辅助的的「微型游戏工作室」逐步崛起

有了生成式人工智能的工具和服务,也许更多可行的商业游戏,会由只有 1 或 2 名员工的小型「微型工作室」制作。当然,小型独立游戏工作室已经很常见,热门游戏《Among Us》(笔者注:Among Us 是一款由 Innersloth 制作发行的策略休闲游戏,可以进行 4-10 人联机游玩,于 2018 年 11 月 17 日发售)是由只有 5 名员工的工作室 Innersloth 制作的,而这些小型工作室能够创造的游戏的规模将增长。

 4. 每年发布的游戏数量会增加

Unity 和 Roblox 的成功表明,提供强大的创意工具会导致更多的游戏被建造。生成性人工智能将进一步降低门槛,创造更多的游戏。这个行业已经遭受了发现挑战 -- 仅去年就有超过 1 万个游戏被添加到 Steam 上 -- 这将给发现带来更大的压力。然而,我们也将看到...

 5. 新的游戏类型将会被创造出来

将会有新的游戏类型被发明出来,像前文提到的《微软模拟飞行》,但全新的游戏类型发明出来,这种游戏会和新内容的实时生成结合起来。

例如 Spellbrush 的 RPG 游戏 Arrowmancer,以人工智能创造的角色为特色,几乎没有限制的新玩法。还有的游戏开发商,正在使用人工智能让玩家在游戏中创建自己的头像:根据玩家的描述来自动生成头像图片。注意,从用户端的体验来看,让玩家通过人工智能生成内容,能让玩家感知到更大的所有权。

 6. 价值将归于特定行业的 AI 工具,而不仅仅是基础模型

围绕Stable Diffusion和 Midjourney 等基础模型的热度,正在产生极其夸张的估值,但随着新研究的持续涌现,新模型将随着新技术的完善而出现和不断迭代。从目前 3 个流行的生成性人工智能模型(Dall-E、Midjourney 和 Stable Diffusion)的网站搜索流量来看,每个新模型都有围绕它的特定关注点。

另一种途径是构建符合行业需求(垂直行业)工具套件,这些工具会专注于特定行业的生成式人工智能需求,深入了解特定的受众,并与现有的生产场景(Unity 或 Unreal)进行整合。(笔者注:上篇翻译的 Coatue 白皮书 AIGC 的机会到底在何处?其中提到了 Adobe 和 Office 套件与 AI 的结合,类似的需求也存在游戏领域,值得关注)

一个典型的例子是 Runway,Runway 针对视频创作者的需求,提供人工智能辅助工具,如视频编辑、绿屏移除、内画和运动跟踪,这样的工具可以随着时间的推移增加新的应用场景。目前还没有看到像 Runway 这样的游戏工具出现,但这是一个有潜力的领域。

 7. 即将面临的法律挑战

所有这些生成式人工智能模型的共同点是,这些 AI 模型都是使用大量的内容数据集进行训练的,通常是通过互联网的数据集来创建。例如,「Stable Diffusion」是在超过 50 亿张图片 / 标题的基础上进行训练的,这些图片 / 标题都是从网络上采集而来的。目前,这些模型声称在「合理使用」的版权原则下运作,但这一论点还没有在法律得到明确的检验。显然即将到来的法律挑战可能会改变生成式人工智能的格局。

大型电影公司有可能通过自己版权的优势建立专有模型,寻求竞争优势。例如,微软有很多旗下的工作室,特别是还收购了动视暴雪。

 8. 至少在目前,不同于艺术领域,生成式 AI 会不会在编程领域带来巨大的变革。

软件工程是游戏开发的另一个主要成本来源,但用人工智能模型生成代码需要更多的测试和验证,因此,代码生成比生成创意资产的生产力提升程度要低。我们认为,像 Copilot 这样的编码工具可能为工程师提供适度的性能改进,但在短期内不会和内容领域变化这么大。

 1. 开始探索生成性人工智能:想要弄清楚如何充分利用这场即将到来的生成式人工智能革命的力量,还需要一段时间。早开始发展业务的公司未来会具备优势,有几个工作室正在进行内部实验项目,探索这些技术如何影响游戏制作。

 2.寻找市场空白之处的机会

目前整个赛道的很多部分已经非常拥挤,如动画、语音、对话,但还有很多领域是广泛开放的。我们鼓励对这一领域感兴趣的创业者将目光集中在仍未开发的领域,如「游戏 + 生成式 AI 赛道」。

阿法兔

个人专栏

阅读更多

金色早8点

金色财经

去中心化金融社区

CertiK中文社区

虎嗅科技

区块律动BlockBeats

念青

深潮TechFlow

Odaily星球日报

腾讯研究院

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

区块博客

[0:15ms0-6:785ms