TOR:柏林硬分叉对 Gas 影响几何?_Mainston

柏林硬分叉已于4月14日在主网上线,引入了四份EIP。其中的两份(EIP-2929?和?EIP-2930)对交易的gas成本有影响。本文将解释部分gas成本在柏林前是如何计算的,加入了EIP-2929后会如何变化,以及如何使用EIP-2930引入的访问列表。

要点速览

这篇文章很长,这是它的概要:

柏林硬分叉改变一些操作码的gas成本。如果在一个dapp或一个智能合约里gas费的值是硬编码的,它们可能会中止运行。如果这种情况发生了,且智能合约是不可更新的,消费者将需要用EIP-2930的访问列表才能使用那部分的操作码。

访问列表可以用作减少少量的gas成本,但实际上它们在一些情况下是会增加总gas消耗量的。

geth?增加了一个叫?eth_createAccessList?的新RPC方法,用以简化访问列表的创建。

柏林硬分叉前的gas成本

EVM执行的每个操作码都有一笔相关的gas成本。它们大多数的成本是固定的:PUSH1?总是消耗3个单位的gas,MUL?消耗5个,等等。其他一些是会变化的:比如?SHA3?的操作码成本依赖于它的输入大小。

我们主要讨论操作码?SLOAD?和?SSTORE,因为它们是最受柏林硬分叉影响的。我们以后会讨论针对地址的操作码,比如所有的?EXT*?和?CALL*?,因为它们的gas成本也改变了。

Bundlr Network实现Arweave与Arbitrum的集成:3月9日消息,去中心化存储协议 Bundlr Network 宣布实现 Arweave 与 Arbitrum 的无缝集成,即通过 Bundlr Network 协议,Arbitrum 上的用户能够将数据永久存储在 Arweave 上。[2022/3/9 13:46:23]

柏林前SLOAD的gas成本

在没有EIP-2929之前,SLOAD?的gas消耗很简单:它总是消耗800gas。所以没有什么可说的。

柏林前SSTORE的gas成本

在gas消耗方面,SSTORE?可能是最复杂的操作码了,因为它的成本取决于像存储slot的当前值、新值、以及它是否之前被修改过。我们仅对一些情况进行分析以获得一个基本理解;如果你想了解更多,请阅读文末的EIP链接。

如果存储slot的值从0变成1(或任何非0的值),gas消耗量是20000。

如果存储slot的值从1变成2(或任何其他非0的值),gas消耗量是5000。

如果存储slot的值从1(或任何非0的值)变成0,gas消耗量也是5000,但在交易的最后你会获得1笔gas费返还。本文不会讨论gas费返还,因为它们在柏林硬分叉中不受影响。

如果存储slot的值在之前相同的交易中被修改了,往后所有?SSTORE?的gas消耗量都是800。

PancakeBunny发布攻击报告与补充计划,将补偿总计240万美元的MND代币:官方消息,DeFi收益聚合器PancakeBunny发布攻击报告与补充计划,闪电贷攻击者铸造210万枚polyBUNNY,攻击者偿还闪电贷后获利约1,281 ETH。PancakeBunny表示,将补偿在被攻击时持有polyBUNNY的所有用户,包括polyBUNNY-ETH和polyBUNNY-QUICK。

团队将验证在区块高度16933434时,持有polyBUNNY的所有钱包地址。在攻击时持有polyBUNNY的用户都将从团队的MND份额中获得MND代币。团队将向polyBUNNY持有者分发总计240万美元的MND代币作为总补偿,大致相当于攻击者获利金额。[2021/7/18 1:00:32]

这部分的细节并不有趣,重要的是?SSTORE?很贵,而它的消耗取决于几个因素。

EIP-2929后的gas消耗

EIP-2929对上述所有操作码的gas消耗都有影响。但在深入这些变化前,我们需要先谈谈这份EIP引入的一个重要概念:访问过的地址(accessedaddresses)与访问过的存储密钥(accessedstoragekeys)。

如果一个地址或一个存储密钥在之前的交易中被“使用”过,那么它们就会被视为“访问过的”。例如,当你?CALL一个其他合约,该合约的地址就会被标为“accessed(访问过的)”。同样地,当你?SLOAD或?SSTORE一些slot的时候,交易的其他部分也会被视为访问过的。哪个操作码执行它并不重要:如果一个?SLOAD?读取了一个slot,接下来的?SLOAD?和SSTORE?都会被视为访问过的。

DeFi收益聚合器PancakeBunny决定将于6月7日停止Bunny Boost池:官方消息,DeFi收益聚合器PancakeBunny(BUNNY)宣布,作为减少Bunny供应过剩一部分,团队决定在UTC时间6月7日02:00停止Bunny Boost池。[2021/6/4 23:11:13]

这里值得注意的是,存储密钥是“内置于“一些地址的。就如这份EIP所解释:

在执行交易时,维持一组?accessed_addresses:Set?和accessed_storage_keys:Set]

也就是说,当我们说一个存储slot被访问了,我们实际上说的一对?(address,storageKey)?被访问了。

接下来谈谈新的gas消耗。

柏林后的SLOAD

在柏林硬分叉之前,SLOAD固定消耗800gas。现在,它取决于该存储slot是否被访问过。如果它没有被访问过,gas消耗是2100;如果被访问过了,则是100。因此,如果该slot是在访问过的存储密钥列表里的,SLOAD?的gas消耗会少于2000。

柏林后的SSTORE

让我们在EIP-2929语境下重温前面的?SSTORE?例子:

如果存储slot的值从0变成1(或任何非0的值),gas消耗量是:

动态 | 德国电信旗下实验室与柏林州立大学就区块链技术展开合作:6月12日,德国电信宣布,其旗下和T-Labs创新实验室已开始与柏林州立CBOE应用科技大学合作,专注于区块链技术。[2019/6/14]

如果存储密钥没有被访问过,22100

如果被访问过了,20000

如果存储slot的值从1变成2(或任何其他非0的值),gas消耗量是:

如果存储密钥没有被访问过,5000

如果被访问过了,2900

如果存储slot的值从1(或任何非0的值)变成0,gas消耗与上一种情况一样,再加上返还。

如果存储slot的值在之前相同的交易中被修改了,往后所有?SSTORE?的gas消耗量都是100。

如你所见,如果?SSTORE?正在修改的slot是之前被访问过的,第一个SSTORE?消耗少于2100gas。

总结

下表对上述的值进行了比较:

请注意,在最后一行没有必要谈论slot是否已经被访问过,因为如果它之前就被写入,那它就被访问过了。

EIP-2930:可选访问列表交易

我们一开始提及的其他EIP就是EIP-2930。这份EIP增加了一种新的交易类型,它可以在交易里加入一个访问列表。这意味着你可以在交易执行开始前,事先声明哪些地址和slot应被视为访问过的。例如,一个未被访问过的slot的一个?SLOAD?需要消耗2100gas,但如果该slot被加入到交易访问列表里,同一个操作码只需消耗100gas。

Gnosis12月12日将在柏林举行开发者见面会:Gnosis (GNO)将于12月12日在柏林举行开发者见面会。[2017/12/10]

但如果已经被访问过的地址或存储密钥会消耗更少gas,这是否意味着我们可以把所有东西都添加到交易访问列表来降低gas消耗了?棒!不用给gas费了!然而,不尽然是这样,因为你每次添加地址和存储密钥的时候还是需要支付gas费的。

我们来看一个例子。假如我们正在向合约A发送一笔交易,访问列表可能如下:

如果我们发送一笔附有这个访问列表的交易,使用slot?0x0?的第一个操作码是SLOAD,它消耗的是100而不是2100gas。这减少了2000gas。但每次把存储密钥添加到交易的访问列表中都需要消耗1900gas。因此我们只省了100gas。(如果访问该slot的第一个操作码是?SSTORE而不是?SLOAD,我们可以省2100gas,也就是说如果我们考虑的是存储密钥的消耗的话,我们总共节省200gas。)

这是否代表只要我们使用交易访问列表就能节省gas?不是的,因为我们还需要支付添加地址到访问列表(即我们的例子中的?""?)的gas。

访问过的地址

到目前为止,我们只讨论了操作码?SLOAD?和?SSTORE,但柏林升级后不是只有这些操作码有变化。例如,操作码?CALL?之前的固定消耗量是700。但EIP-2929后,如果地址不在访问列表里,它的消耗量变成了2600,如果在,则是100。还有,像访问过的存储密钥,无论之前访问的是什么操作码(例如,如果EXTCODESIZE?是第一次被调用,那么该操作码将消耗2600gas,而往后任何使用同一个地址的?EXTCODESIZE、?CALL?还是STATICCALL都只消耗100gas)。

这是如何影响有访问列表的交易的呢?例如,假如我们给合约A发送一笔交易,而该合约调用另一个合约B,那么我们可以加入这样一个列表:

我们将需要支付2400gas以把这个访问列表加入到交易里,但之后使用?B?地址的第一个操作码只消耗100gas,而不是2600。因此,我们通过这样做节省了100gas。如果?B?以某种方式使用它的存储,且我们知道使用的是哪个密钥,那么我们也可以把它们加入到访问列表里,这样可以为每个密钥节省100~200gas(取决于你的第一个操作码是?SLOAD?还是?SSTORE?)。

但是为什么我们要谈论另一个合约?我们正在调用的合约呢?为什么不对这个合约进行这些操作?

我们可以这样做,但这样不划算,因为EIP-2929明确规定正在被调用的合约(即tx.to)地址会默认加入到?accessed_addresses?列表里。因此我们无须支付多余的2400gas。

让我们再对之前的例子进行分析:

除非我们要加入多几个存储密钥,否则这其实很浪费。如果我们预设?SLOAD?总是首先使用存储密钥,那么我们起码需要24个存储密钥能保本。

你可以想象一下,做分析与手动创建一个访问列表并不那么有趣。幸运的是,其实有更好的方法。

eth_createAccessListRPC方法

Geth(从1.10.2版本开始)加入了一个新的?eth_createAccessList?RPC方法,你可以用它来生成访问列表。它的使用与?eth_estimateGas?相似,但它返回的不是gas估值,而是像下面这样的结果:

也就是它给你该交易会用到的地址与存储密钥的列表,加上访问列表被加入情况下所消耗的gas。但,这并不代表gas消耗量会低于在没有访问列表情况下发送同一笔交易所消耗的!

我想我们会随着时间推移发现使用它的正确方法,但我猜的伪代码如下:

给合约松绑

值得一提的是,访问列表的主要目的不在于使用gas。如EIP所解释:

减轻由EIP-2929引入的合约断裂风险,因为交易可以提前指定交易计划访问的账户和存储slot并提前支付;最终在实际执行中,操作码SLOAD和EXT*只消耗100gas:这个低gas消耗不仅可以防止由该EIP引起的断裂,还可以“松开”任何因EIP-1884而受限的合约。

这意味着如果一个合约对执行某事务的成本做了假设,gas成本的增加就可能使它停止运作。例如,一个合约调用另一个合约,像这样someOtherContract.someFunction{gas:34500}(),因为它假设someFunction?会准确消耗34500gas,这样它会出问题。但如果你添加了一个合理的访问列表,那么合约会再次运作。

自己做检验

如果你像自己去测试,复制这个代码库,里面由多个可以用?Hardhat?和geth执行的实例。在README查看说明。

参考文献

EIP-2929?和?EIP-2930?是与本文相关的两个柏林硬分叉EIP。

EIP-2930依赖于柏林硬分叉的另一部分:?EIP-2718,它又叫类型交易。

EIP-2929参考了很多?EIP-2200,因此如果你想深入了解gas成本,你可以从那里开始。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

区块博客

[0:15ms0-3:380ms