人工智能:隐私计算词典丨联邦学习为何如此博人眼球?_区块链

前言:隐私计算赛道作为当下的风口赛道,无数企业纷纷涌入,抢跑占道。作为一家专注于区块链隐私计算赛道科普入门的垂直媒体,同时也是针对隐私计算兴趣者开放的“纯天然”、低门槛入口,我们汇总并分类了隐私计算行业内晦涩难懂的名词,编写了「隐私计算词典」板块,帮助大家理解、学习。?

此篇,我们来了解隐私计算技术架构的第三部分——联邦学习。

近年来,从无人驾驶汽车,到AlphaGo击败顶尖的真人围棋手等等,AI人工智能在科技领域的发展着实吸引了足够多人的眼球。

然而,发展至今的AI人工智能仍面临两大现实问题:

行业数据分散且收集困难,数据以孤岛的形式存在;

PlatON隐私计算网络PIP-10提案开启链上治理升级投票:10月25日消息,PlatON隐私计算网络PIP-10提案已于10月25日开启链上治理升级投票。本次提案治理为期约15天,提议将PlatON隐私计算网络升级至1.3.0版本。

版本更新升级内容包括:1. 解委托的Token将锁定56个结算周期;2. PlatON链ID变更提案(PIP-7)第3阶段完成实施(EVM返回新ChainID)。[2022/10/25 16:38:26]

隐私得不到保障,安全共享数据成为了一道壁垒。

针对此,人们提出了一种名为「联邦学习」的隐私计算技术。

联邦学习,又名联邦机器学习、联合学习。它是AI人工智能的一门分支技术,旨在保障大数据交换时的信息安全、数据保护,在合法合规的前提下,有效帮助多行业的数据进行机器学习建模。

DeFi资管平台Bella Protocol完成对隐私计算项目ARPA持有者的BEL空投计划:8月26日消息,DeFi资管平台Bella Protocol宣布完成了针对隐私计算项目ARPA持有者的BEL空投计划。此前,Bella Protocol基金会于2020年9月决定将200万枚BEL代币每季度分八轮分发给ARPA持有者。[2022/8/26 12:50:27]

隐私保护是联邦学习最主要的关注点,在实际的应用中,联邦学习通过将数据的不同特征在加密的状态下加以聚合,以增强机器学习模型能力,再通过共享数据模型,避开原始数据共享,进而保证了数据的安全性。?

利用联邦学习的特点,即使是不导出企业数据的情况下,也能为三方或多方建立机器学习模型,既充分保护了数据隐私和数据安全,又为客户提供个性化、有针对性的服务,实现了互惠互利。?

隐私计算网络Oasis获Binance Labs 4000万美元支持:1月11日消息,隐私计算网络Oasis获得Binance Labs4000万美元支持,用于扶持Oasis生态DeFi、数据DAO、NFT、元宇宙等领域项目发展,推动Oasis生态进一步繁荣。此前,在AMECloud Ventures、Dragonfly Capital Partners、FBG、Pantera Capital等一众生态深度合作伙伴的支持下,Oasis成立1.6亿美元的生态系统发展基金,Binance Labs加入后,该基金总额高达2亿美元。[2022/1/12 8:42:30]

同时,我们可以利用不同类别的联邦学习技术来解决数据异质性问题,突破传统AI技术的局限性。依照参与建模的数据源分布,联邦学习可分为横向联邦学习、纵向联邦学习和联邦迁移学习三类。?

动态 | 隐私计算项目 Enigma 将发布最小化可行产品 已开源核心组件:隐私计算项目 Enigma 表示,其最小化可行产品「Discovery」的发布已经进入最后准备阶段,已经在 Github 上开源了该阶段核心组件的代码,其中包括 Enigma 合约和 Enigma 代码库、Enigma Core、Enigma P2P。该项目团队表示,不久将会在测试网上发布 Enigma 协议的最小化可行产品「Discovery 」,该团队很快将会发布测试套件和开发者环境,让开发者可以在 Discovery 上创建 DApp。[2019/4/7]

横向联邦学习

?假设收集两个数据集,这两个数据集用户特征重叠多,而用户重叠少。我们把数据集按照用户维度切分,取出双方用户特征相同,而用户不完全相同的部分数据作为机器的训练数据,这种模型称为横向联邦学习。?

例如,两个不同行政区的银行,用户群体分别来自所在行政区,重叠部分少。但是同作为银行,业务类似,因此数据集收集的用户特征则大体相同。因此,横向联邦学习模型收集的是两个数据集不完全相同的用户部分。?

如下图所示:?

纵向联邦学习

与横向联邦学习相反,在两个数据集用户重叠多、用户特征重叠少的情况下,纵向联邦学习把数据集按照数据特征维度切分,取出双方用户相同,而用户特征不完全相同的部分作为机器训练数据。?

例如,同一个行政区的银行和商超,其收集的数据用户群体大致类似,但银行和商超收集到的用户特征基本不同。因此,纵向联邦学习模型收集的是两个数据集不完全相同的用户特征部分。?

如下图所示:

联邦迁移学习

在用于机器学习的数据集样本用户与用户特征重叠都较少的情况下,通常不对数据进行切分,而是引入联邦迁移学习,来解决数据不足的问题,从而提升模型的效果。

具体地,可以扩展已有的机器学习方法,使之具有横向联邦学习或者纵向联邦学习的能力。?例如,收集一家位于北京的银行和一家位于上海的商超的数据,由于受到地域限制,用户群体交集很小;同时,由于银行和商超类型的不同,二者收集的数据特征也基本无重合。?

引入联邦迁移学习,首先可以先让两个数据集训练各自的模型,之后通过加密模型数据,避免在传输中泄露隐私。之后,对这些模型进行联合训练,最后得出最优的模型,再返回给各个企业。?

如下图所示:?

多种类别的联邦学习方式使得机器学习模型更加具有通用性,可以在不同数据结构、不同行业间发挥作用,没有领域和算法限制,同时具有模型质量无损、保护隐私、确保数据安全的优势。?

在实际的应用中,类似销售、金融等行业,由于知识产权、隐私保护和数据安全等因素限制,数据壁垒很难打通。

联邦学习成为了解决这些问题的关键,在不影响数据隐私和安全的情况下,对来自多方的数据进行统一的建模,进行机器学习模型的训练,这些企业之间就能更好地进行数据协作。?

可以说,联邦学习为构建跨行业、跨地域的大数据和人工智能生态圈提供了良好的技术支持。?考虑到在整个训练过程中,进行模型更新的通信仍然可以向第三方或中央服务器显示敏感信息,因此联邦学习技术广泛地与安全多方计算、TEE或者区块链等技术结合应用,来增强联邦学习的隐私性和去信任。

但目前已有的方法通常以降低模型性能或系统效率为代价提供隐私,因此,如何在理论和经验上理解和平衡这些权衡,将是实现联邦学习技术广泛应用落地的一个相当大的挑战。

来源:金色财经

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

区块博客

[0:0ms0-4:787ms