COIN:Paradigm:如何使用链上数据进行策略研究?_huntercoin

I.引言

Crypto政策在制定时很少会用到真实且细化的数据,原因主要有以下三点:

1.新兴技术领域的相关政策大多还停留在理论及定性分析层面,早期阶段很少会使用到数据。

2.尽管链上数据全部开放透明,但要想访问这些数据人们需要在短期内完成大量工作,即便对于Crypto原生从业者来说也是如此。

3.区块链「取证」公司和数据供应商有少量的数据产品,但它们都不具备灵活性/可定制性,也不能满足经济/金融研究人员的需求。

许多现代经济学和金融学研究人员错过了将工具应用于Crypto数据分析的机会。从设计上讲,Crypto可以向任何人提供细化数据,但大部分政策在制定时仍依赖于CoinMarketCap等外部预聚合时间序列数据源,而不是直接从数据源获取数据,这又是什么原因导致的呢?

正如政策制定者可以查询美国每家主要银行的资产负债表,并逐秒观察消费者存款的变化一样,他们也可以毫不费力地查看整个Ethereum生态系统的Stablecoin发行情况,但大多数分析Stablecoin的政策文件却采取了一种探讨假设事件的分析方法。

我将在本篇中具体阐释以下几点内容,希望可以对想要使用链上数据的政策研究人员有所帮助:

FTX已提交重组计划,拟重启离岸交易所以弥补客户亏损:8月1日消息,FTX用户联盟发推称,FTX已提交重组计划,关键点包括所有非客户索赔(例如IRS)都将被之后处理、FTT索赔将被清零、重启离岸交易所以弥补客户亏损。[2023/8/1 16:10:32]

·链上数据的获取方法

·链上数据所采用的结构

·提取和使用链上数据的几个基本工具

在随后的文章中,我将探讨如何使用这里收集的数据来判断Crypto市场的走势。同时,我将在结尾发布可供免费使用的数据和代码。通过阐明如何在区块链中查询数据,我希望向大家展示Crypto的开放性可以为数据决策开辟的新方法。

如果您就职于一家监管机构或研究机构,并在获取Crypto数据时遇到了困难,欢迎与我们取得联系分享你的想法,了解Paradigm可以为您提供哪些帮助。

II.链上数据获取方法

一般来讲,数据收集工作应集中在一个区块链及特定项目的子集上,这些项目主要是以美元计价、法币支持的Stablecoin,具体包括USDC、Tether、BinanceUSD、PaxDollar和GeminiDollar。该方法广泛适用于链上数据,即便你想创建一个不同的数据集。

华尔街日报:SBF曾试图通过拖延破产申请将资产从FTX转移到外国监管机构:金色财经报道,据华尔街日报援引美国司法部文件报道,SBF曾于2022年11月试图在美国拖延破产程序,以便将资产从FTX转移到外国监管机构控制下,寻求外国监管机构对宽大处理,并最终允许其重新控制FTX。

据悉,在FTX冻结客户账户后,SBF允许巴哈马客户提取数百万美元。SBF曾写信给巴哈马总检察长,称FTX将为该国的客户破例。(华尔街日报)[2023/1/31 11:37:37]

Etherscan这类区块浏览器非常适用于查看交易快照以及收集特定智能合约的信息,但根据我的经验,它们却不太能用于生成大型数据集。在收集和处理原始数据时,你基本上有两个选择:在本地运行一个完整的节点,或查询已经从链上直接写入原始数据的数据库。第一种方法对于专业技能和计算资源的要求比较高,而第二种方法则只需要基本的SQL和Python技能就可以实现,所以这里我们将采用第二种方法。

Dune和谷歌云平台的BigQuery有最新的链上数据,这些数据都以表格的形式存储在数据库中,研究人员可使用SQL命令对其进行查询。Dune还提供免费的数据库,不过其速度较慢,而且还有些局限性,但它非常适合于A/B测试的数据查询,也有助于你熟悉数据库的运行模式,尤其是对于那些不善于使用SQL查询关联数据库的人。BigQuery虽然更加灵活快捷,但谷歌会对计算资源收费,所以其价格也相对昂贵。我在第一次处理数据时,为了节省费用,我会先在Dune中测试查询语句,然后再将其输入GCP中运行。在大多数情况下,这种方法都能起到很好的效果

律师提交动议要求法官裁定FTX无权动用客户资产:金色财经报道,代表FTX.com非美国客户的律师提交了一份动议,要求特拉华州一名法官裁定锁定在FTX平台的客户资产属于客户,FTX无权动用它们。FTX国际债权人特设委员会目前代表FTX的18个国际客户,代表FTX平台上锁定的总计19.4亿美元资产。特设委员会的律师表示,迄今为止FTX在客户资金问题上一直保持沉默,该公司高管可能希望用这些资金支付运营成本。律师表示:“尽管官方委员会完全由FTX.com客户组成,没有美国客户,也没有一般无担保债权人,寻求确定资产属于客户而不是整个FTX可能会产生利益冲突”。[2022/12/31 22:18:02]

III.链上数据结构

要回答这个问题,你首先需要搞清楚自己处理数据的目的。对于这个测试案例,我决定为主要的法定支持Stablecoin建立一个大型的时间序列数据集,并观察一些特定的行为:铸币,烧毁(即停止流通Stablecoin)和转移。我之所以选择以这种方式进行研究,是因为政策制定者和学者目前最为关注法定支持的Stablecoin,所以这些数据在短期内可能相当有用。

以美元计价的几大Stablecoin都采用了ERC-20Token标准。顾名思义,ERC-20是一种在Ethereum上使用智能合约创建Token的标准化方式。如果你把区块链理解为一个巨大的去中心化Excel表格,那么智能合约就类似于Excel函数。在函数中输入参数之后,它将使用其内置逻辑产生一个特定的输出结果。

FTX创始人:SushiSwap密钥已转移 接下来将转移控制权到多签名:FTX创始人兼首席执行官Sam Bankman Fried(SBF)发推跟进SushiSwap控制权转让进程,具体如下:

1. 现在Sushi的密钥已经转移,现在该把控制权转给一个多签名(multisig);

2. 旧的迁移绑定了Nomi(SushiSwap创始人Chef Nomi)的密钥,所以取消了。现在用一个与我绑定的相同密钥代替。现在大家可以投票:如果在接下来的12小时内大多数人投票反对这一迁移,我们将取消;

3. 将控制权转移到一个多签名。如果你想成为成员之一,请在该条推文下发表评论:“我想成为一个Sushi多签名密钥持有人”。我们将根据相应评论获得的点赞数选出前20名,并进行合适的投票。[2020/9/6]

我们可以使用智能合约的Ethereum地址来对它们进行定位,这些地址是区块链数据结构中的唯一标识符:

·?USDC

·?TetherUSD

·?BinanceUSD

·?PaxDollar

·?GeminiDollar

与API类似,智能合约也是可以重复使用的程序。每次智能合约获得互动指令时,都会产生该互动的记录,并由Ethereum协议以日志的形式记录在区块链上,而这些日志则构成了智能合约活动的可靠信息来源。

AsiaOne正式上线VidyCoin,支持兑换Paragon商场现金券:AsiaOne是新加坡报业控股(Singapore Press Holdings, SPH)旗下的一家数字内容网站,该网站于1月15日正式上线VidyCoin,将使用Vidy技术来为用户提供数字货币激励,用户只需观看线上文章内嵌的视频广告即可获得VidyCoin,并可将其兑换成新加坡大型奢侈品商场Paragon的现金券。

据介绍,VidyCoin创建于2018年,是Vidy的原生加密货币。VidyCoin可以兑换Paragon商场的多品牌优惠券,如老虎堂(Tiger Sugar)、亚坤咖椰吐司(Ya Kun Kaya Toast)、Mala Mala、Irvin’s Salted Egg、罗勒泰式厨房(Basil Thai Kitchen)和无印良品(MUJI)。[2021/1/15 16:15:38]

当智能合同执行一个特定函数时,例如烧毁ERC-20Stablecoin以将其从流通中移除,该函数及其参数将作为交易日志记录在区块链上。

在下面的交易中,USDCStablecoin的发行商Circle烧毁了价值1056.92美元的USDC。

如果你切换到「日志」标签,你就可以查看交易事件日志,相应的字段为

·地址:智能合约的合约地址。USDCStablecoin的合约地址是0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48。

·名称:智能合约执行的函数,以及该函数中的参数。在这里,智能合约正在调用烧毁函数,该函数接收的参数指定了所烧毁币的发送地点和烧毁币的数量。

Etherscan的输出结果还会显示主题和数据字段,这些字段包含了我们在分析交易时需要解析的大部分相关信息。

·Topic0是函数签名的哈希值。从本质上讲,它会将函数及其参数经由单向算法得到一个唯一的函数哈希值。Ethereum使用的是Keccak-256哈希函数,当你通过Keccak-256算法输入函数签名时,它总是会产生相同的哈希值,所以任何时候该哈希值出现在日志中,你都能确信是调用了同一个函数。

·Topic1是烧毁函数的一个索引参数。在这里,Topic1是烧毁的Token被发往的地址。(注意:如果烧毁函数有更多的参数,这些参数将作为额外的主题出现)

·这里的数据字段表示所烧毁Token的数量。

既然我们已经了解了链上数据的基本结构,就可以开始从Dune和GCP中提取数据了。

IV.提取并处理链上数据的基本工具

如前所述,在这个例子中,我选择从现有数据库中提取链上数据,而不是访问Ethereum网络上的活动节点。为了便于理解,我使用SQL从GCP提取了大量原始数据表格,然后在Python中使用pandas库对其进行清理。

当我们从GCP提取表格时,我们将使用BigQuery,它储存有很多Ethereum的数据表,如下图左边一栏所示。当你点击一个表格时,相应的数据库模式就会出现,就如下图中的ethereum.logs表。与此同时,其中涉及的地址、数据和主题都会记录到日志数据中去。

下图中的查询语句将用于提取日志表中涉及与USDC、TetherUSD、BinanceUSD、PaxDollar或GeminiDollar合约互动的所有记录。除了ethereum.logs中的信息外,一些额外的信息也很有用,所以我还合并了ethereum.block表中的数据,其中涵盖了Gas费等信息。

得到的表格可以直接由Python读取,并借助pandas数据框架细分为以下字段:

·log_index

·transaction_hash

·transaction_index

·address

·data

·topics

·block_timestamp

·block_number

·block_hash

·number

·miner

·size

·gas_limit

·gas_used

·base_fee_per_gas

这些字段中的大多数都可以直接使用,不过第三节中讨论的主题字段需要用Python进行一些额外的清理,以便将其分成多列。

V.结语

这篇文章使用的是Ethereum的日志数据,同样的方法也可以用来访问链上的各种数据。Python和SQL是大多数经济学家和政策制定者所熟悉的工具,它们可以发挥很大作用。与传统金融相比,Crypto更具透明度。这样一来,研究人员就可以利用实时数据来阐明金融体系的运作方式,并及时控制住可能出现的风险。

在下一篇文章中,我将着重分析法币支持Stablecoin的铸造与烧毁,并提前准备好相应的数据集。在第三篇文章中,我将以图表的形式向大家展示精细化链上数据可用来研究的问题。

责任编辑:Kate

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

区块博客

[0:0ms0-3:518ms